Synthesis and Identification of Pyromellitamic diacids and Pyromellitdiimides derivatives.

Zainab A. Hadi
Chemistry Department, Ibn –AL-Haitham, College of Education, University of Baghdad

Abstract

New derivatives of pyromellitamic diacids and pyromellitdiimides have been prepared by the reaction of one mole of pyromellitic dianhydride with two moles of aromatic amines, these derivatives were characterized by elemental analysis, FT-IR and melting point.

Introduction

Phthalamic acids [I] were obtained from the reaction of arylamines with phthalic anhydride [Sherrill, 1928; Allen, 1955; Ponos, 1960; Subbarao, 1962].

\[
\text{[I]} \quad \begin{array}{c}
\text{HOOC} \\
\text{CONH} \\
\text{COOH}
\end{array} \quad \begin{array}{c}
\text{R}
\end{array}
\]

Diamic acids synthesized from pyromellitic dianhydride (PMDA) have also prepared from the reaction of amines (2 moles) with (PMDA) (1 mole), Dine et al [dine – hart and Wright,1967] have given the structure [II] for such diamic acids.

\[
\text{[II]} \quad \begin{array}{c}
\text{HOOC} \\
\text{CONHR}
\end{array} \quad \begin{array}{c}
\text{RHNOC}
\end{array} \quad \begin{array}{c}
\text{COOH}
\end{array}
\]

Diamic acids on dehydration using acetic anhydride, sodium acetate system yielded, the corresponding diimides [III] [Awad, and Ali, 1977; Cotter et al., 1961]
The synthesis of pyromellitamic diacids and pyromellitdiimides have been steadily wideniny their application in different fields such as:

Excited doublet states of electrochemically [David Gosztola, et al.,2000], preparation new alkali-soluble polymides and alternating multilayer nano-films therefrom [Kyung and follow,2004], neutral [2] Rotaxanes [Takahiro Iijima, Scott A. Vignon, and follow ,2004], formation sole products [Valdimir et al.,2008], switchable self-Assembly of Donor-Acceptor Metallo-[2] catenanes [Gayane and follow,2008], used in synthesized viasllipage a neutral rotaxane [Richie Kohman, 2005], using for high Mobility n-channel transistor [Qingdong and Follow,2008], as curing behaviour and thermal stability of DGEBA [Darshan and follow,2009], has proven to be a valuable architectural tool in the preparation of large macrocycles [Gondo and follow ,2009], photophysical Behavior of Heteroduplexes [ZHAO Shu-min And follow ,2009], has arisen because of their potential applications for supramolecular and new functional materials [C. Ge and follow ,2009], can be used as liquid-phase, homogeneous catalysts or can be supported on a solid carrier to provide aheterogeneous catalyst [Cheng etal,2009], aqueous suspension prepping [Liliana Burakowski Nohara and follow,2010].

Experimental Section:

A-Materials:

All chemicals used without further purification pyromellitic dianhydride (Fluka), acetone (Fluka), 2,3-dimethyl aniline (BDH), 4-Iodo aniline (BDH), O-Anisidine (BDH), M-Anisidine (BDH), O-Toluidine (BDH), Acetic anhydride (Fluka), sodium acetate anhydrous (Fluka).

B-Instrumention:

Melting points were recorded using electro thermal melting point apparatus-Infrared spectra were recorded with (SHIMADZU-FT-IR-8400) in Ibn-Al-Haitham College of Education. Elemental analysis were done on EURO EA instrument in Al-Mustansiriya University.

Synthesis of N,N'-Pyromellitamic diacid (II) [Mohammad J. Al-Azzawi and follow,1988]

A solution of pyromellitic dianhydride (PMAD) (1 mole) in (10 ml) acetone was stirred , then a solution of amine (2 moles) in (10 ml) acetone was added drop wise for 2hr. (Table 1). The mixture was left at room temperature for 12hr, with continuous stirring, then the coloured product was filtered, refluxed with (10 ml) ether, (10 ml) acetone, and (10 ml) benzene for 20min, each to remove the remaining starting materials and impurities present after which the product was dried by vacuum oven.

Synthesis of N,N'-pyromillitdiimide (III) [Mohammad J. Al-Azzawi and follow,1988]:

(1 mole) of diamic acid (II) obtained, was placed in (100 ml)round bottom flask fitted with mechanical stirrer, and a mixture of freshly fused sodium acetate (1 mole) in (10 ml) acetic anhydride, was added. The mixture was heated up to (90 °C) in a water-Bath with continuous stirring for 2hr. The mixture was stirred for another 2hr at room temperature, then poured on crushed ice (10 fold) before being filtered. The residue was than refluxed with (10 ml) benzene, (10 ml) chloroform, (10 ml) acetone, (10 ml) dichloromethane, (10 ml) ethanol and finally with (10 ml) ether for (10 min) each.
Results and Discussion

The dehydration of diamic acids was carried out using a mixture of acetic anhydride-sodium acetate system according to the following sequence [Robert Thornton Morrison and Robert Neilson Boyd, 2007]:

\[
\text{HOOC} - \text{CONHR} \rightarrow \text{(CH}_2\text{COONa)} \rightarrow \text{(CH}_2\text{CO}_2\text{O)} \rightarrow \text{(III)} \rightarrow \text{[III]} \rightarrow \text{R} \cdot \text{N} - \text{N} \cdot \text{R} + 2 \text{CH}_3\text{CO}_2\text{O}
\]

Table 1: The pyromellitamic diacids and pyromellitiimidates synthesized.

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>RHNOC</th>
<th>COOH</th>
<th>CONHR</th>
<th>Comp. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R = o-xylene-</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>R = p-Iodo phenyl-</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>R = m-Anisole-</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>R = o-Anisole-</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>R = o-Toluene-</td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
The identification of the pyromellitamic diacid and pyromellitdiimides was essentially based on C, H, N analysis, Meting point and their IR spectra (Tables 2 and 3).

Table 2: Structure confirmation of the synthesized compounds by M.P and C, H, N analysis.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>M.P °C</th>
<th>Yield</th>
<th>C% calculate (found)</th>
<th>H% calculate (found)</th>
<th>N% calculate (found)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂₆H₂₄N₂O₆</td>
<td>> 300</td>
<td>89</td>
<td>67.82 (67.32)</td>
<td>5.21 (4.98)</td>
<td>6.08 (5.87)</td>
</tr>
<tr>
<td>C₂₂H₁₄N₂O₆I₂</td>
<td>210 dec</td>
<td>77</td>
<td>40.36 (40.06)</td>
<td>2.14 (1.98)</td>
<td>4.28 (4.08)</td>
</tr>
<tr>
<td>C₂₄H₂₀N₂O₈</td>
<td>> 300</td>
<td>78</td>
<td>62.06 (61.85)</td>
<td>4.31 (4.02)</td>
<td>6.03 (5.81)</td>
</tr>
<tr>
<td>C₂₄H₂₀N₂O₈</td>
<td>> 300</td>
<td>88</td>
<td>62.06 (61.90)</td>
<td>4.31 (4.05)</td>
<td>6.03 (5.86)</td>
</tr>
<tr>
<td>C₂₄H₂₀N₂O₆</td>
<td>220-222</td>
<td>92</td>
<td>66.66 (66.12)</td>
<td>4.62 (4.45)</td>
<td>6.48 (6.14)</td>
</tr>
<tr>
<td>C₂₆H₂₀N₂O₄</td>
<td>> 250</td>
<td>89</td>
<td>73.58 (73.22)</td>
<td>4.71 (4.31)</td>
<td>6.60 (6.25)</td>
</tr>
<tr>
<td>C₂₂H₁₈N₂O₄I₂</td>
<td>> 250</td>
<td>92</td>
<td>42.71 (42.23)</td>
<td>1.61 (1.33)</td>
<td>4.53 (4.29)</td>
</tr>
<tr>
<td>C₂₄H₁₆N₂O₆</td>
<td>> 250</td>
<td>75</td>
<td>67.28 (66.90)</td>
<td>3.73 (3.26)</td>
<td>3.27 (3.06)</td>
</tr>
<tr>
<td>C₂₄H₁₆N₂O₆</td>
<td>> 250</td>
<td>81</td>
<td>67.28 (66.94)</td>
<td>3.73 (3.33)</td>
<td>3.27 (3.10)</td>
</tr>
<tr>
<td>C₂₄H₁₆N₂O₄</td>
<td>> 250</td>
<td>83</td>
<td>72.72 (72.22)</td>
<td>4.04 (3.75)</td>
<td>7.07 (6.68)</td>
</tr>
</tbody>
</table>

Spectra studies
Infrared spectra

Figures (1, 2, 3, 4 and 5) show the absorption spectra of (P₁, P₂, P₃, P₄ and P₅) exhibited abroad band near the region (2777 – 3444) cm⁻¹ due to stretching vibration of (O-H) carboxylic acid groups often interferes with (C-H) absorptions and (N-H) amide groups for all compounds. Bands near the region (1639-1720)cm⁻¹ were assigned the vibration modes of \(\text{(--C=O)}\) acid groups [Silverston, R.M., Bassler and C.G. Morril,1923,1981, Dyer. R. J.,1965, Dudley. H. Williams and Ian Fleming,1995, J. Michael Hollas,2008] for all compounds. Bands near the region (1558-1654)cm⁻¹ were assigned to the vibrational modes of \(\text{(--N=O)}\) amide groups for all compounds (Table 3).

The bands related to acid and amide groups disappeared after dehydration [Mohammad J. Al-Azzawi and follow,1988], using acetic anhydride-sodium acetate. The characteristic absorption bands of Imides groups near (1612-1720)cm⁻¹ were present in the spectra figures (6, 7, 8, 9 and 10). These absorption bands confirm the presence of imide groups for all compounds (P₆, P₇, P₈, P₀ and P₁₀) (Table 3).
Table 3: Structure confirmation of the synthesized compounds by FTIR.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(\nu(\text{N-H})) amide cm(^{-1})</th>
<th>(\nu(\text{O-H})) acid cm(^{-1})</th>
<th>(\nu(\text{C-H})) arom cm(^{-1})</th>
<th>(\nu(\text{C-H})) aliph cm(^{-1})</th>
<th>(\nu(\text{C=C})) cm(^{-1})</th>
<th>(\nu(\text{C=O})) acid cm(^{-1})</th>
<th>(\nu(\text{C=O})) amide cm(^{-1})</th>
<th>(\nu(\text{C=O})) imide cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}{26}\text{H}{24}\text{N}{2}\text{O}{6})</td>
<td>3444</td>
<td>2777-3444</td>
<td>3105</td>
<td>2981</td>
<td>1527</td>
<td>1666</td>
<td>1577</td>
<td>-</td>
</tr>
<tr>
<td>(\text{C}{22}\text{H}{14}\text{N}{2}\text{O}{6}\text{I}_{2})</td>
<td>3444</td>
<td>3444</td>
<td>3290</td>
<td>-</td>
<td>1489</td>
<td>1639</td>
<td>1558</td>
<td>-</td>
</tr>
<tr>
<td>(\text{C}{24}\text{H}{20}\text{N}{2}\text{O}{8})</td>
<td>3444</td>
<td>3444</td>
<td>3305</td>
<td>2835</td>
<td>1550</td>
<td>1666</td>
<td>1639</td>
<td>-</td>
</tr>
<tr>
<td>(\text{C}{22}\text{H}{20}\text{N}{2}\text{O}{6})</td>
<td>3444</td>
<td>3444</td>
<td>3286</td>
<td>2843</td>
<td>1558</td>
<td>1639</td>
<td>1639</td>
<td>-</td>
</tr>
<tr>
<td>(\text{C}{24}\text{H}{20}\text{N}{2}\text{O}{6})</td>
<td>3406</td>
<td>3406</td>
<td>3200</td>
<td>2927</td>
<td>1566</td>
<td>1720</td>
<td>1654</td>
<td>-</td>
</tr>
<tr>
<td>(\text{C}{26}\text{H}{20}\text{N}{2}\text{O}{4})</td>
<td>-</td>
<td>-</td>
<td>3089</td>
<td>2924</td>
<td>1573</td>
<td>-</td>
<td>-</td>
<td>1685</td>
</tr>
<tr>
<td>(\text{C}{22}\text{H}{10}\text{N}{2}\text{O}{4}\text{I}_{2})</td>
<td>-</td>
<td>-</td>
<td>3070</td>
<td>-</td>
<td>1542</td>
<td>-</td>
<td>-</td>
<td>1720</td>
</tr>
<tr>
<td>(\text{C}{24}\text{H}{16}\text{N}{2}\text{O}{6})</td>
<td>-</td>
<td>-</td>
<td>3078</td>
<td>2839</td>
<td>1450</td>
<td>-</td>
<td>-</td>
<td>1612</td>
</tr>
<tr>
<td>(\text{C}{24}\text{H}{16}\text{N}{2}\text{O}{6})</td>
<td>-</td>
<td>-</td>
<td>3078</td>
<td>2843</td>
<td>1504</td>
<td>-</td>
<td>-</td>
<td>1643</td>
</tr>
<tr>
<td>(\text{C}{24}\text{H}{16}\text{N}{2}\text{O}{4})</td>
<td>-</td>
<td>-</td>
<td>3116</td>
<td>2900</td>
<td>1458</td>
<td>-</td>
<td>-</td>
<td>1573</td>
</tr>
</tbody>
</table>

Fig.(1): FTIR Spectrum of (\(\text{C}_{26}\text{H}_{24}\text{N}_{2}\text{O}_{6}\)).
Fig. (2): FTIR Spectrum of (C\textsubscript{22}H\textsubscript{14}N\textsubscript{2}O\textsubscript{6}I\textsubscript{2}).

Fig. (3): FTIR Spectrum of (C\textsubscript{24}H\textsubscript{20}N\textsubscript{2}O\textsubscript{8}).
Fig.(4): FT.IR Spectrum of \((C_{24}H_{20}N_{2}O_{8})\).

Fig.(5): FT.IR Spectrum of \((C_{24}H_{20}N_{2}O_{6})\).
Fig.(6): FT.IR Spectrum of (C$_{26}$H$_{20}$N$_2$O$_4$).

Fig.(7): FT.IR Spectrum of (C$_{22}$H$_{10}$N$_2$O$_4$I$_2$).
Fig.(8): FT.IR Spectrum of (C\textsubscript{24}H\textsubscript{16}N\textsubscript{2}O\textsubscript{6}).

Fig.(9): FT.IR Spectrum of (C\textsubscript{24}H\textsubscript{10}N\textsubscript{2}O\textsubscript{6}).
Fig. (10): FT-IR Spectrum of (C_{24}H_{10}N_{2}O_{4}).

References
C. Ge, X. Li, X. Zhang, Y. Zhao and R. Zhang, “2, 2-(1,3,5,7- Tetraoxo-
1,2,3,5,6,7-hexahydropyrrolo [3,4-f] isoindole-2, 6- diyl) diacetic acid N,N-di-
C.A. Gondo, D. E. Lynch and D. G. Hamilton, “N, N-Bis(1-ethynylecyclohexyl)
Darshan, Priti Malhotra & A K Narula , “ Effect of Structure of diamide-diimide-
David Gosztola, Mark P. Niemezyk, and Walter Svec, “ Excited Doublet states of
Electrochemically Generated Aromatic Imides and Diimide Radical Anions” ,
Dine-Hart, R.A. and Wright, W.W. Preparation and fabrication of aromatic
Dudley. H. Williams and Ian Fleming, “Spectroscopic Methods In organic
Dyer. R. J., “Application of Absorption Spectroscopy of organic compounds” ,
Gayane Koshk akaryan, Kumar Parimal, Jiuming He, Xiyun Zhang, Zeper Abliz,
Amar H. Flood, and Yi Liu, “π-Stacking Enhanced Dynamic and Redox-
10218.

