Relationship between Prostate Specific Antigen and Testosterone, Insulin, Adiponectin on Prostate Cancer Patients with Metabolic Syndrome

Jaleel Ibrahim Assad
Biotechnology Researcher Center, Al-Nahrain University
jaleelasaad@yahoo.com

Saad Merza Hussin, Hadi Muhmmed, AL-Musawi
College of Medicine / University of Babylon
drsadalaraji@gmail.com dr-hadialmusawi@yahoo.com

Abstract
Prostate cancer (PCa) is a very common visceral malignancy in men it counts about one-third of all male cancers and it is the second cause of cancer death in males in United States of America. The conduction of this trial is to know the relationship between prostate specific antigen (PSA), testosterone (T), insulin and adiponectin in prostate cancer patients suffering from metabolic syndrome (MetS). There is significant difference (p< 0.05) in PSA level (39.04± 5.05, 2.93± 0.26 ng/ml respectively in prostate cancer group compared with control group. Significant Difference (p<0.05) in prostate cancer testosterone level (2.44±0.15, 3.10± 0.14 ng/ml respectively compared with control group. Significant difference (p<0.05) in prostate cancer adiponectin level (3.82 ±0.12, 4.50± 0.39 µiu/ml respectively compared with control group. Significant difference (p<0.05) in prostate cancer insulin level (6.13±0.86, 3.77± 0.27 µu/ml respectively compared with control group. There is weak negative correlation between PSA and T (-0.29), weak negative correlation between PSA and insulin (-0.11). Correlation between PSA and adiponectin is undetectable.

Key words: prostate cancer, metabolic syndrome, testosterone, adiponectin, mechanism.

Introduction
Prostate cancer (PCa) is the very common visceral malignancy in men. It counts about one-third of all male cancers and it is the second cause of cancer death in males in United States of America (Jemal et al., 2005). PCa is now known as a major public health case affecting western countries. It remains the prevalent malignancy and cause of cancer deaths between men in the USA; with an about 233000 new cases represent 27% of tumors and 29480 represent 10% of deaths during 2014 in the United States of America (American cancer society, 2014). The greatest threat from PCa its ability to
Prostate specific antigen PSA screening, digital rectal examination DRE were mainly used for PCa diagnosis, definitive diagnosis of PCa is made by transrectal ultrasound (TRUS)-guided needle biopsy (Matlaga et al., 2003). The presence of the insulin receptors InR directly on prostate tumor tissue has only recently been reported and shown that increased InR expression correlates with increasing Gleason grade and Castration-resistant prostate cancer (CRPC) (Cox et al., 2009) providing further evidence that insulin and insulin receptor signaling may have a critical role driving progression of advanced Pca (Belfiore et al., 2009). Adiponectin encoded by adipose most abundant gene transcript 1(APM1) which has been mapped to chromosome 3 q27, synthesized and secreted by the adipose tissue. Adiponectin is associated with cancer risk and key mediator in development and progression of several types of cancers (Paz-Filho et al., 2011) and circulating adiponectin levels are decreased in patients with diabetes and obesity-associated cancers (Kelesidis et al., 2006). Upregulation of adiponectin is a partial cause of the insulin-sensitizing and antidiabetic actions. Therefore, adiponectin and adiponectin receptors represent potential therapeutic targets to combat obesity-linked diseases characterized by insulin resistance (IR) (Kadowaki et al., 2006). Testosterone (T) is essential for the normal development of the prostate both during fetal life and during puberty (Macleod et al., 2010). The testosterone is also necessary for normal function of the prostate during adulthood. Testosterone has a major influence on many tissues and is synthesized from cholesterol in a series of enzymatic steps involving several of the cytochrome p450 enzymes (Waterman et al., 1992). The metabolites of testosterone can bound to the other receptors causing different effects. Testosterone converted to dihydrotestosterone DHT by the enzyme 5α-reductase, the intraprostatic DHT/T Ratio is 6/1 (Marks et al., 2008). The critical role of androgens in the development and growth of prostatic tissue, including its influence on benign prostatic hyperplasia, has been well characterized.

Material and methods

Blood was collected from (50) patients and (40) healthy subjects (ages between 50≥ 70 years) by 5 ml syringe and vacuolated in jell and clot activator test tube (Jordan).

Centrifugation after 45 minutes of the blood 3000 rpm for 5 minutes to obtain the serum.

- Total PSA kits (biomerieux, france) for detection of prostate specific antigen level by minVIDAS(USA).
- Testosterone hormone kits (biomerieux, france) for detection of testosterone assay by minVIDAS(USA).
- Insulin hormone kit (cobas/Roche) for detection of insulin assay by (C.411, Germany).
- Adeponectin hormone kits (sigma/Aldrich) for detection of adeponectin by (ASYS,Austeria).

Data Analysis

The analyses were performed using the statistical package for social (spss) version 16(ANOVA), (P<0.05) between prostate cancer patients group and control group and within patients group (Elston and Johonson, 2008).
Result

Data refer there is significant difference (p≤0.05) in PAS levels in prostate cancer patients group compared with control group (39.04±5.02, 2.93±0.26) ng/ml receptively. There is significant difference (p≤0.05) in decreased testosterone level in prostate cancer patients group compared with control group (2.44±0.15, 3.10± 0.14) ng/ml receptively. There is significant difference (p≤0.05) in decreased adiponectin level in prostate cancer patients group compared with control group (8.79±0.14, 9.80± 0.19) µiu/ml receptively. Insulin level increased significantly (p≤0.05) in prostate cancer patients group compared with control group (6.13±0.86, 3.77±0.27) µu/ml receptively.

Table- 1: Levels of prostate specific antigen, testosterone, adiponectin and insulin in prostate cancer patients group and control group mean ± SE

<table>
<thead>
<tr>
<th>Group</th>
<th>PSA/ng/ml</th>
<th>Testosterone ng/ml</th>
<th>Adiponectin µiu/ml</th>
<th>Insulin /µu/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate cancer patients</td>
<td>39.04 ±5.02 b</td>
<td>2.44±0.15 b</td>
<td>8.79±0.14 b</td>
<td>6.13±0.86 b</td>
</tr>
<tr>
<td>Control</td>
<td>2.93 ± 0.26 a</td>
<td>3.10±0.14 a</td>
<td>9.80± 0.19 a</td>
<td>3.77± 0.27 a</td>
</tr>
</tbody>
</table>

Different litters indicate significant difference (p≤0.05)
There is weak negative correlation between PSA and testosterone (-0.29), weak negative correlation between PSA and insulin (-0.11).correlation between PSA and adiponectin negligible.

Figure (1) weak negative correlation between prostate specific antigen and testosterone in prostate Cancer patients.
Figure (2) weak negative correlation between prostate specific antigen and insulin in prostate cancer patients.

Figure (3) correlation between prostate specific antigen and adiponectin negligible
Discussion

Prostate cancer diagnosis performed by PSA test and digital rectal examination (DRE) and confirmed by Trans rectal biopsies Table (1) showed increased in PSA level of the patients. This result may be due to The luminal active PSA which did not undergo proteolysis to yield inactive PSA, which enter the circulation in the free in addition to the tissue architecture is lost which results in relative increase in binding PSA and proPSA in serum in PCa (Lilja et al.,2008). The real cause of decline in testosterone levels because most PCa patients are diabetic and Plasmas levels of total Testosterones are lower in men with type 2 Diabetes (Pitteloud et al., 2005). Diabetes might impair testosterone secretion from the Leydig cell, may be directly via insulin receptors on the Leydig cell (Pitteloud et al., 2005). Adiponectin is correlated with cancer risk and key mediator in development and progression of several types of cancers (Paz-Filho et al., 2011). Adiponectin levels are decreased in patients with diabetes and obesity-associated cancers (Kelesidis et al., 2006). Adiponectin negatively impacts growth of most obesity-concerning cancer types, such as prostate (Bub et al., 2006) Reduced adiponectin expression developed mammary tumors by downregulating Phosphatase and Tensin homolog (PTEN) and upregulating Phosphoinositide-3 kinase PI3K/Akt signaling (Lam et al., 2009). and reduced the activity of ceramidase in converting ceramide to sphingosine-1-phosphate potent inducer of proliferation and inhibitor of apoptosis (Takabe et al., 2008). Insulin can activate lipogenesis, steroidogenesis, and protein synthesis and antiapoptotic survival pathways in many cell types (Belfiore et al., 2009). Insulin signals take place through two insulin receptors A and B (InSR-A and InSR-B) (Belfiore et al., 2009), that belong to a family of tyrosine kinases receptors which includes the insulin-like growth factor 1 receptor (IGF-1R). Many tumors types have upregulated expression of IGF-1R, InSR, and potentially hybrid InSR/IGF-1Rs which facilitate increased activation of mitogenic, prosurvival and protein synthesis pathways with the increased levels of ligands insulin, IGF-1 or IGF-2 (Zhang et al., 2010). The inverse correlations between testosterone and PSA as result of the expression of PSA are more prominent in the reduced Testosterone level (Weigel, 2007).

References

