Fully Dual-Stable S-system

Asaad M.A. Al-Husaini
Department of Mathematics, University of Babylon, Iraq
asaad.hosain@itnet.uobabylon.edu.iq

Haider Hussein Almamori
Department of Mathematics, University of Babylon, Iraq
haider9111973@gmail.com

Abstract

An S-system M is fully stable if $\alpha(N) \subseteq N$ for each subsystem N and S–homomorphism α of N into M. In this paper we study the dual concept of full stability. Duo property of an S-system being a necessary condition for both full stability and full dual stability, and quasi-projectivity is sufficient condition for duo to be fully dual stable system. Several properties and characterizations of full dual stability are investigated.

Keywords: dual-stable subsystem, fully dual-stable S-system, duo S-system, quasi projective S-system, Hopfian and Co-Hopfian S-system.

1. Introduction and Preliminaries

The notion of full stability and full dual stability were studied on modules by (Abbas, 1990; Abbas and Al-Hosainy, 2012). Most of the modules notions, were reversed to S-system (S-acts), and interesting results were obtained. The notions of full stability on S-system, were studied, recently, by Abbas and Baanno (Abbas and Baanoon, 2015). In this paper, the notion of full dual-stability on S-system, is investigated.

A subsystem B_S of an S-system A_S is said to be dual stable if $B_S \times B_S \subseteq \ker \alpha$, for each S-homomorphism $\alpha : A_S \rightarrow A_S/B_S$. The S-system A_S is said to be fully dual stable (shortly, fully d-stable) if each subsystem of A_S is dual-stable. An S-system A_S is said to be strongly dual stable if $\ker g \subseteq \ker f$ whenever f and g are S-homomorphism of A_S into B_S and g is surjective, where B_S is any S-system.

The above two conditions are equivalent in the case of modules, but in S-system, the second condition implies the first. This difference occurred because of the fact that in modules, the kernel of a homomorphism is a submodule, while the kernel of S-homomorphism does not need to be induced by a subsystem.

In this section, some preliminaries about S-system and related concepts were given. For more information about S-system (s-act) see (Kilp and Mikhlev, 2000).

In section 2, the main results about full d-stability and the related concepts(duo, multiplication, quasi-projective) were given. More results about full d-stability and quasi-projectivity discussed in section 3.
(1.1) Definition (Kilp and Mikhalev, 2000). Let S be a monoid and A is a nonempty set. If we have a mapping $\mu : A \times S \rightarrow A$, $(a, s) \mapsto a \cdot s = \mu(a, s)$ such that:

a) $a \cdot 1 = a$ and
b) $a(st) = (as)t$ for $a \in A$, $s, t \in S$,

we call A a right S–system or right system over S and write it as A_S. More informally, we often say that μ defines a right multiplication of element from A by element of S.

Analogously, we define a left S-system A and write S_A.

(1.2) Definition (Abbas and Dahash, 2014). A subsystem N of S-system M is called fully invariant if $\alpha(N) \subseteq N$ for each S-endomorphism α of M_S, M_S is duo S-system if each subsystem of M_S is fully invariant.

The following lemma is a part of lemma (1.3) (Roueentan and Ershad, 2012), for completeness we give a proof for it.

(1.3) Lemma: An S-system M_S is duo iff for each endomorphism f of M and each element m, there exists $r \in S$ (depending on m) such that, $f(m) = mr$.

Proof: (\Rightarrow) Assume M is a duo S-system, $f \in \text{End}_S M$ and $m \in M$. Then mS is a subsystem of M and $m \in mS$.

Since M is duo, we have $f(mS) \subseteq mS$, hence $f(m) \in mS$, that is $\exists r \in S$ such that $f(m) = mr$.

(\Leftarrow) It is clear.

Recall that U is said to be a generating set of A_S if for all $a \in A$, $a = us$ for some $u \in U$ and $s \in S$.

(1.4) Definition (Kilp and Mikhalev, 2000): A set U of generating elements of a right S-system A_S is said to be a basis of A_S if every element $a \in A_S$ can be uniquely presented in the form $a = us$, $u \in U$, $s \in S$, if $a = u_1s_1 = u_2s_2$, then $u_1 = u_2$ and $s_1 = s_2$. If an S-system A_S has a basis U, then it is called a free S-system or, more precisely, a $|U|$-free S-system. In particular, S_S is 1-free with basis $\{1\}$. Also, we say that A_S is of rank $|U|$.

(1.5) Definition (Kilp and Mikhalev, 2000): Let M_S be an S-system. An equivalence relation ρ on M is called an S-system congruence or a congruence on M_S, if $(m, n) \in \rho$ implies $(ms, ns) \in \rho$ for $m, n \in M_S$, $s \in S$. If S is a monoid then any right(semigroup) congruence ρ on S is an S-system congruence on S_S.

(1.6) Definition (Kilp and Mikhalev, 2000): Any subsystem $B_S \subseteq A_S$ defines the Rees congruence ρ_B on A, by setting $(a, \dot{a}) \in \rho_B$ if $a, \dot{a} \in B$ or $a = \dot{a}$.

(1.7) Definition (Kilp and Mikhalev, 2000): Let A_S be a right S-system. An element $\theta \in A_S$ is called a fixed element of A_S if $\theta s = \theta$ for all $s \in S$. If A_S has a unique fixed element θ, then θ is called zero element of A_S, we will denote the zero element of A_S by 0.

(1.8) Definition (Kilp and Mikhalev, 2000): We call an S-system A_S decomposable if there exist two subsystems $B_S, C_S \subseteq A_S$ such that $A_S = B_S \cup C_S$ and $B_S \cap C_S = \emptyset$. In this case $A_S = B_S \cup C_S$ is called a decomposition of A_S. Otherwise A_S is called indecomposable.

If we consider S-system with zero θ, then we have to replace \emptyset by $\{\theta\}$ to define decomposable and indecomposable S-system with zero.
(1.9) **Definition** (Kilp and Mikhalev, 2000): An S-system A_S is called **torsion free** if for any $x, y \in A_S$ and right cancellable element $c \in S$ the equality $xc = yc \Rightarrow x = y$.

(1.10) **Definition** (Kilp and Mikhalev, 2000): An S-system A_S is called quasi-projective if for any epimorphism $\pi : A_S \rightarrow B_S$ and homomorphism $\alpha : A_S \rightarrow B_S$ there exists an endomorphism f of A_S such that $\pi f = \alpha$.

Note it is clear that if M_S is quasi-projective then for all N subsystem M_S and for all $\alpha : M \rightarrow M / N$ there exists $f \in \operatorname{End} M$ such that $\pi_{N^o} f = \alpha$ where π_N is the natural epimorphism of M onto M / N.

(1.11) **Definition** (Kilp and Mikhalev, 2000): Let A_S and B_S be two S-systems. Consider an S-homomorphism $f : A_S \rightarrow B_S$. Then f is called a **retraction** if f is right invertible, i.e. there exists $g \in \operatorname{Hom}_S(B,A)$ with $fg = \text{id}_B$; B is called a retract of A.

2. **Fully dual stable S-system**

We start by introducing the dual concept of fully stable S-system.

(2.1) **Definition**: Let M be an S-system and N is a subsystem of M. N is said to be d-stable sub-system of M if, $N \times N \subseteq \ker \alpha$, for all $\alpha : M \rightarrow M / N$. M is said to be fully d-stable if, any subsystem of M is d-stable.

(2.2) **Remark**: If S is a monoid, then S is fully d-stable if S_S is fully d-stable.

(2.3) **Lemma**: If $f : A_S \rightarrow B_S$ is homomorphism, $\varphi : B_S \rightarrow C_S$ is an isomorphism then $\ker \varphi \circ f = \ker f$.

Proof: Is clear.

(2.4) **Proposition**: If M_S is fully d-stable S-system, then M / N is fully d-stable for any subsystem N_S of M_S.

Proof: Let K / N be a subsystem of M / N and $\alpha : M / N \rightarrow (M / N) / (K/N)$ be a homomorphism, consider the composition

\[
M \xrightarrow{\pi_S} M/N \xrightarrow{\alpha} (M/N)/(K/N) \cong M/K
\]

since M is fully d-stable, it follows, $K \times K \subseteq \ker \varphi \alpha \pi_N = \ker \alpha \pi_N$ (lemma 2.3). Now, if $([k_1]_N, [k_2]_N) \in K / N \times K / N$, then $(k_1, k_2) \in K \times K$, hence $(\alpha \pi_N)(k_1) = (\alpha \pi_N)(k_2)$, that is $\alpha(\pi_N(k_1)) = \alpha(\pi_N(k_2))$. Then $\alpha([k_1]_N) = \alpha([k_2]_N)$, that is $([k_1]_N, [k_2]_N) \in \ker \alpha$. Therefore $K / N \times K / N \subseteq \ker \alpha$, and M / N is fully d-stable.

(2.5) **Theorem**: Let M be an S-system. The following two statements are equivalent.

1. For each congruence ρ on M and for each S-homomorphism $\alpha : M \rightarrow M / \rho$, $\rho \subseteq \ker \alpha$ holds.
2. For any S-system A_S, and for each two homomorphisms $f, g : M_S \rightarrow A_S$, with g onto, $\ker g \subseteq \ker f$ holds.

![Diagram](image-url)
Proof:- (1) \Rightarrow (2)
Since $g: M_S \rightarrow A_S$ is onto hence $A_S \cong M_S / \ker g$, let $\varphi: A_S \rightarrow M_S / \ker g$ be an isomorphism therefore $\varphi \circ f: M_S \rightarrow M_S / \ker g$. By hypothesis, $\ker g \subseteq \ker (\varphi \circ f) = \ker f$ (since φ is one to one).

(2) \Rightarrow (1)
ρ congruence on M_S, $\alpha: M_S \rightarrow M_S / \rho$, let $\pi: M_S \rightarrow M_S / \rho$ natural epimorphism $\pi(m) = [m]_\rho$, then $\ker \pi = \rho$, $([m_1]_\rho = [m_2]_\rho \Leftrightarrow (m_1, m_2) \in \rho)$. By (2) $\ker \pi \subseteq \ker \alpha$, therefore $\rho \subseteq \ker \alpha$.

(2.6) Definition: An S-system M_S is said to be strongly d-stable S-system if it satisfies any of the two equivalent conditions of Theorem (2.5).

(2.7) Remark: Any strongly d-stable S-system is fully d-stable.
Proof: Let N_S be a subsystem of M_S and $\alpha: M_S \rightarrow M_S / N_S$, then ρ_N is a congruence on M and $N \times N \subseteq \rho_N$ (where ρ_N is the Rees congruence on M). Since M_S is strongly fully d-stable then $\rho_N \subseteq \ker \alpha$, and hence $N \times N \subseteq \ker \alpha$.

(2.8) Proposition: A homomorphic image of a strongly d-stable S-system is strongly d-stable S-system too.
Proof: Assume that $f: M \rightarrow \hat{M}$ is an epimorphism. Let $g, h: \hat{M} \rightarrow A$ be two S-homomorphisms with g surjective, then $g \circ f, h \circ f: M \rightarrow A$ are S-homomorphisms, we have $\ker g \circ f \subseteq \ker h \circ f$, (M is strongly d-stable, $g \circ f$ onto).

\[
\begin{array}{ccc}
M & \xrightarrow{f} & \hat{M} \\
& \downarrow & \downarrow h \\
M & \xrightarrow{g} & A
\end{array}
\]

To prove $\ker g \subseteq \ker h$, let $(m, n) \in \ker g$, then $g(m) = g(n)$ since f is surjective we have $m = f(x), n = f(y)$ for some $x, y \in M$, hence $g(f(x)) = g(f(y))$, that is $(x, y) \in \ker g \circ f \subseteq \ker h \circ f$, hence $(x, y) \in \ker (h \circ f) \Rightarrow h(f(x)) = h(f(y))$, $h(m) = h(n) \Rightarrow (m, n) \in \ker h$. Therefore, $\ker g \subseteq \ker h$, which implies \hat{M} is strongly fully d-stable.

(2.9) Proposition: Let M be an S-system, with the property, that either it has no zero element, or a unique zero element which is contained in any subsystem of M. If M is fully (strongly) d-stable then it is duo.
Proof: By Remark (2.7), it is enough to prove the case (fully d-stable).
Let M_S be a fully d-stable S-system, f an endomorphism of M_S, and N_S a subsystem of M_S. Then $\pi_N \circ f : M_S \to M_S / N_S$ is a homomorphism, which implies $N \times N \subseteq \ker \pi_N \circ f$. (where π_N is the natural epimorphism). Let $x \in N$, we have two cases:

1. For all $y \in N$, $f(x) = f(y)$, then $f(N)$ is a one–element subsystem, and hence $f(x)$ is a fixed element of M which must be unique and contained in any subsystem of M, (by hypothesis), that is, $f(x) \in N$.
2. There exists $y \in N$, with $f(x) \neq f(y)$, then $(x, y) \in \ker \pi_N \circ f$ implies $\pi_N(f(x)) = \pi_N(f(y))$, then $f(x), f(y) \in N$, therefore $f(x) \in N$ then, in the two cases $f(x) \in N \forall x \in N$, that is $f(N) \subseteq N$. So, M_S is duo.

(2.10) **Proposition:** Every quasi-projective duo S-system is fully d-stable.

Proof:

Let N be a subsystem of M, $\alpha : M \to M / N$ is a homomorphism, since M is quasi-projective there exists an endomorphism h of M such that $\pi_N h = \alpha$ where π_N is the natural epimorphism of M onto M / N. Let $x, y \in N$ then $h(x) = xs, h(y) = yt$ for some $s, t \in S$ (since M is duo) that is $(h(x), h(y))$ in $N \times N$ hence $\alpha(x) = \pi(h(x)) = \pi(xs) = \pi(yt) = \pi(h(y)) = \alpha(y)$ therefore $N \times N \subseteq \ker \alpha$.

(2.11) **Corollary:** Any duo monoid is fully d-stable.

Proof:
Let V_S be a subsystem of S and $\alpha : S \to S/V_S$ be a homomorphism, with π_V surjective.

Assume that $\alpha(1) = [t]_V$, for some $t \in S$. Define h by $h(s) = ts, \forall s \in S$,

$\pi_V(h(s)) = \pi_V(ts) = \pi_V(t)s = [t]_Vs = \alpha(1)s = \alpha(s)$ that is $\pi h = \alpha$, therefore S_S is quasi-projective. Since S_S is duo, then by (proposition 2.10), S_S is fully d-stable. ■

Theorem: Let M be a fully d-stable S-system and N is a subsystem of M such that $\alpha : M \to M/N$ is any S-homomorphism. Then for each $m \in M$ there exists $r \in S$ such that $\alpha(m) = [m]_N r$ (r depends on α and m).

Proof: Let M_S be a fully d-stable S-system, and N a subsystem of M_S, define $\lambda : M/N \to M/N$ by $\lambda([m]_N) = \alpha(m)$. For all $m_1, m_2 \in M$,

$[m_1] = [m_2] \Rightarrow m_1 = m_2$ or $m_1, m_2 \in N$(since $N \times N \subseteq \ker \alpha$), then $\alpha(m_1) = \alpha(m_2)$, hence λ is well defined. It is clear that λ is an S-homomorphism. Since M/N is fully d-stable, it is duo (proposition 2.9). By(lemma 1.3) $\lambda([m]_N) = [m]r \Rightarrow \alpha(m) = [m]r$, for some $r \in S$. ■

Corollary: An S-system M is fully d-stable if and only if for each subsystem N each S-homomorphism $\alpha : M \to M/N$ has the property that for each $m \in M$, there exists $r \in S$ such that $\alpha(m) = [m]_N r$ (r depends on α and m).

Proof: By (Theorem 2.12).

(\Leftarrow) Assume that for each $m \in M$, there exists $r \in S$ such that $\alpha(m) = [m]_N r$, let $m, n \in N$, then $\alpha(m) = [m]_N r = [mr]_N = \{N\}$ also $\alpha(n) = [n]_N s = [ns]_N = \{N\}$ for some $r, s \in S$ ($mr, ns \in N$), so $\alpha(m) = \alpha(n)$ then $(m, n) \in \ker \alpha$ that is $N \times N \subseteq \ker \alpha$. ■

Proposition: If S is a monoid, then any free S-system with rank greater than one, is not fully d-stable.

Proof: Let A_S be free S-system with rank more than one. Let $\{x_1, x_2\}$ be a subset of some basis X of A_S with $(x_1 \neq x_2)$.

Define $f : X \to S_S$ by

$$f(x) = \begin{cases} x & \text{if } x \notin \{x_1, x_2\} \\ x_1 & \text{if } x = x_1 \\ x_2 & \text{if } x = x_2 \\ x_1 & \text{if } x = x_2 \end{cases}$$

since A_S is free f can be extended to an endomorphism \bar{f} of A_S.

Note that $\bar{f}(x_1) = x_2S \not\subseteq x_1S$, that is, A_S is not duo, so by(proposition 2.9), A_S cannot be fully d-stable. ■

Proposition: Let S be a commutative monoid all of its elements satisfy left cancellation . If A_S is a duo torsion free and indecomposable S-system then for all $f \in \text{End } A_S$, there exists $r \in S$ such that $f(a) = ar$ for all $a \in A$. (r depends only on f)

Proof: Assume A_S is duo torsion free and $f : A_S \to A_S$, then for all $a \in A$ there exists $s \in S$ such that $f(a) = as$. Assume a, b are distinct elements of A_S and $(s, r \in S)$, $f(a) = as$ and $f(b) = br$. To prove $s = r$, $A_S \cap bS \neq \emptyset$, $\exists u, v \in S$ such that $au = bv$, $f(au) = asu$, $f(bv) = brv \Rightarrow asu = brv \Rightarrow au = bv$ (S is commutative) $\Rightarrow s = r$. (since

376
A_S is torsion free) therefore for all \(f : A_S \rightarrow A_S \), there exists \(r \) (depending on \(f \) only) such that \(f(a) = ar \) for all \(a \in A_S \).

(2.16) Corollary: Let \(S \) be a commutative monoid all of its elements satisfy left cancellation. If \(A_S \) is a duo torsion free and indecomposable \(S \)-system, then End \(A_S \cong S \) (as monoids).

Proof: \(\alpha : \text{End} \ A_S \rightarrow S \), for all \(f \in \text{End} \ A_S \), there exists unique \(r \) such that \(f(a) = ar \) for all \(a \in A_S \) by Proposition(2.15), define \(\alpha(f) = r \). Now, if \(f, g \in \text{End} \ A_S \), \(\alpha(f) = r, \alpha(g) = s \), then \((gf)(a) = g(f(a)) = g(ar) = (ar)s = a(rs) \Rightarrow \alpha(gf) = rs \Rightarrow \alpha(gf) = \alpha(g) \alpha(f) \), hence \(\alpha \) is a monoid homomorphism. \(\alpha \) is onto, \(r \in S \), let \(f(a) = ar, f \in \text{End} \ A_S \). If \(\alpha(f) = \alpha(g) = r \Rightarrow \alpha(f) = \alpha(g) \alpha(f) = \alpha(g) \alpha(f) \), that is \(\alpha \) is one to one, therefore \(\alpha \) is an isomorphism.

(2.17) Proposition: Let \(S \) be a commutative monoid all its elements satisfy left cancellation. If \(M \) is fully \(d \)-stable \(S \)-system and \(N \) is a subsystem of \(M \) such that \(M/N \) is torsion free. Then for each homomorphism \(\alpha : M \rightarrow M/N \) there is \(r \in S \) such that \(\alpha(m) = [m]r \), for all \(m \in M \).

Proof: Recall, to the proof of Theorem (2.12), \(\lambda \) is an \(S \)-endomorphism of the torsion-free duo \(S \)-system \(M/N \). Then by proposition (2.16) there exists \(r \in S \) such that \(\lambda([m]) = [m]r \) for all \([m]_N \in M/N \). Then \(\alpha(m) = \lambda([m]) = [m]r \).

The concepts of Hopfian and Co-Hopfian, where discussed for modules, see (Ozcan,ital..,2006). These concepts can be defined analogously in systems.

(2.18) Definition: Let \(M \) be an \(S \)-system. \(M \) is called Hopfian (Co-Hopfian) if every surjective (injective) endomorphism of \(M \) is an isomorphism.

(2.19) Proposition: Every fully \(d \)-stable \(S \)-system is Hopfian.

Proof: Let \(M \) be a fully \(d \)-stable \(S \)-system. \(f : M_S \rightarrow M_S \) surjective. then \(M_S \cong M_S/\ker f \), let \(\alpha : M_S \rightarrow M_S/\ker f \) be an isomorphism, hence \(\ker \alpha = \Delta_M \) since \(M_S \) is fully \(d \)-stable, that is \(\ker f \subseteq \ker \alpha = \Delta_M \) that is \(\ker f = \Delta_M \), (where \(\Delta_M = \{(x,x) \mid x \in S \} \)), therefore \(f \) is an isomorphism.

(2.20) Example: Let \(S = (N, \cdot)\), then \(N_S \) is a fully \(d \)-stable \(S \)-system (Remark 2.2), it is not Co-Hopfian since \(f : N_S \rightarrow N_S, f(n) = 2 n \) is an injective homomorphism, which is not isomorphism.

3. Dual stability and quasi-projective \(S \)-system

(3.1) Proposition: If \(N \) is fully invariant subsystem of a quasi-projective \(S \)-system \(M \) then \(M/N \) is likewise quasi-projective.
Proof: Let K/N be a subsystem of M/N and $\alpha : M/N \rightarrow (M/N)/(K/N)$.

Let $\beta : (M/N)/(K/N) \rightarrow M/K$ be an isomorphism. Then $\exists g : M \rightarrow M$ such that

$$\pi_K \circ g = \beta \circ \alpha \circ \pi_N \quad \Rightarrow \quad (\beta \pi \pi_N) \circ g = \beta \circ \alpha \circ \pi_N \Rightarrow \pi \pi_N \circ g = \alpha \circ \pi_N \quad \cdots (1)$$

Where, $(\pi_K : M \rightarrow M/K, \pi_N : M \rightarrow M/N, \pi : M/N \rightarrow (M/N)/(K/N))$.

Define $f : M/N \rightarrow M/N$ by $f([m]) = [g(m)]$. Note that $[m_1] = [m_2]$ implies $m_1 = m_2$ or $m_1, m_2 \in N$, hence $g(m_1) = g(m_2)$ or $g(m_1), g(m_2) \in N$ (N fully invariant), and so $[g(m_1)]_N = [g(m_2)]_N$. Therefore, f is well defined, $f(\pi_N(m)) = \pi_N(g(m))$ for each $m \in M$, $\pi \circ f \circ \pi_N = \alpha \circ \pi_N$ for each $m \in M$, $\pi \circ f \circ \pi_N = \alpha \circ (\pi_N(m))$.

From (1) and (2) $\Rightarrow \pi \circ f \circ \pi_N = \alpha$ for each $m \in M/N \Rightarrow f \circ \pi_N = \alpha$.

(3.2) Proposition (Kilp and Mikhalev, 2000): An S-system B_S is a retract of an S-system A_S if and only if there exists a subsystem \hat{A}_S of A_S and an epimorphism $h : A_S \rightarrow \hat{A}_S$ such that $B_S \cong \hat{A}_S$ and $h(\hat{a}) = \hat{a}$ for every $\hat{a} \in \hat{A}_S$.

(3.3) Lemma: If N, L are two subsystems of an S-system M and if L is a subsystem of N, then there exists an epimorphism $\beta : M/L \rightarrow M/N$ with $(N/L \times N/L) \cup \Delta_{M/L} = \ker \beta$.

Proof: Let $\beta : M/L \rightarrow M/N$ be defined by $[m]_L \mapsto [m]_N$, β is well defined, since $([m_1]_L = [m_2]_L$ hence $m_1, m_2 \in L$ (since L subsystem of N) then $m_1, m_2 \in N$ therefore $[m_1]_N = [m_2]_N$). It is clear that β is a homomorphism.

$$\ker \beta = \{(l, [m_2]_L) | \beta([m_1]_L) = \beta([m_2]_L) \}$$

$$= \{(l, [m_2]_L) | [m_1]_N = [m_2]_N \}$$

$$= \{(l, [m_2]_L) | m_1 = m_2 \text{ or } m_1, m_2 \in N \}$$

$$= (N/L \times N/L) \cup \Delta_{M/L}.$$
Proposition: Let N be a d-stable retract of an S-system M and L is a subsystem of N, then L is d-stable in N if and only if L is d-stable in M.

Proof: (\Rightarrow) Let $\alpha: M \to M/L$ be homomorphism and $\beta: M/L \to M/N$ be as in Lemma(3.3).

Note that $\ker \beta = (N/L \times N/L) \cup \Delta_{M/L}$. If for all $x, y \in N$, $\alpha(x) = \alpha(y)$, then $L \times L \subseteq N \times N \subseteq \ker \alpha$. Now, let $x \in N$, and there exists $y \in N$ such that

$\alpha(x) \neq \alpha(y)$ since $\beta \alpha: M \to M/N$, N is d-stable in M and $(x, y) \in N \times N \subseteq \ker \beta \alpha$, we have $\beta(\alpha(x)) = \beta(\alpha(y))$, so $(\alpha(x), \alpha(y)) \in \ker \beta$, this implies $\alpha(x) \in N/L$ for all $x \in N$, that is $\delta = \alpha|_N: N \to N/L$, by d-stability of L in N, $L \times L \subseteq \ker \delta = (\ker \alpha) \cap (N \times N)$, therefore $L \times L \subseteq \ker \alpha$. So, L is d-stable in M.

(\Leftarrow) Let L be a d-stable in M and $\alpha: N \to N/L$ is an S-homomorphism, let β be a homomorphism of M onto N, such that $\beta|_N = i_N$. (since N is a retract of M), by Definition(1.11). Then $\alpha \circ \beta: M \to M/L$, hence $L \times L \subseteq \ker \alpha \beta$

$= \{(x, y) \in M \times M| (\alpha \beta)(x) = (\alpha \beta)(y) \}$

$= \{(x, y) \in M \times M| \alpha(\beta(x)) = \alpha(\beta(y)) \}$

$(x, y) \in L \times L \Rightarrow x, y \in N \Rightarrow \beta(x) = x$ and $\beta(y) = y \Rightarrow \alpha(x) = \alpha(y) \Rightarrow (x, y) \in \ker \alpha$.

Note that the retract property in Proposition (3.2) used only in the sufficient condition. So the following corollary clarifies the transitivity of d-stability.

Corollary: Let A, N and K be sub-systems of a system M with $A \subseteq N \subseteq K$. If A is d-stable in N and N is d-stable in K, then A is d-stable in K.

Corollary: A homomorphic image of a strongly d-stable quasi-projective S-system is likewise quasi-projective.

Proof: Let M be a strongly d-stable quasi-projective S-system, $\alpha: M \to \tilde{M}$ is an S-epimorphism.
First, note that if $h \in \text{End } M$, then α and αh are two homomorphisms from M into \hat{M}, with α onto, by strong d-stability we have $\ker \alpha \subseteq \ker \alpha h$, that is, $\alpha(m) = \alpha(m')$ implies $\alpha(h(m)) = \alpha(h(m'))$.

Assume that f, $g : M \to A$ be homomorphisms, with g onto, then $g \alpha$, $f \alpha$ are homomorphisms from M into A with $g \alpha$ onto, since M is quasi-projective, there exists $h : M \to M$ such that $g \alpha h = f \alpha$. Define $\hat{h} : \hat{M} \to \hat{M}$ by $\hat{h}(x) = \alpha(h(m))$, where $m \in M$ with $x = \alpha(m)$ (α is onto), \hat{h} is well defined by$(*), also$ $g \alpha h = g \alpha h = f \alpha$, but α is onto implies $g \hat{h} = f$. therefore \hat{M} is quasi-projective.

References